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Abstract
Structures and properties of many of the phases of Ca under pressure are calculated from first
principles by a systematic procedure that minimizes total energy E with respect to structure
under the constraint of constant volume V . The minima of E are followed on successive sweeps
of lattice parameters for 11 of 14 Bravais symmetries for one-atom-per-cell structures. The
structures include the four orthorhombic phases. Also included are the hexagonal close-packed
and cubic diamond phases with two atoms per primitive cell. No uniquely orthorhombic phases
are found; all one-atom orthorhombic phases over a mega-bar pressure range are identical to
higher-symmetry phases. The simple cubic phase is shown to be stable where it is the ground
state. The number of distinct one-atom phases reduces to five plus the two two-atom phases.
For each of these phases the Gibbs free energy at pressure p, G(p), is calculated for a
non-vibrating lattice; the functions G(p) give the ground state at each p, the relative stabilities
of all phases and the thermodynamic phase transition pressures for all phase transitions over a
several-megabar range.

1. Introduction

An infinite periodic crystal under pressure can have many
equilibrium states or phases, which change with pressure.
Stable phases have local stability in that the stresses produced
by small deformations tend to return the phase to the
equilibrium state. At any pressure p the phase with the lowest
Gibbs free energy G is the ground-state phase and is always
stable. The value of G changes with p for each phase, so
the ground-state phase can change with p. At each p there
is a hierarchy of phases with higher G values than the ground
state; these phases have varying degrees of local stability and
are designated metastable [1].

The purpose of this paper is to describe and apply a
systematic first-principles procedure which we have applied
previously [1–5] to find the structures and properties of the
phases of elements as functions of p, including the Gibbs free
energy G(p). For Ca more phases are studied than we studied
in previous elements. However we limit the systems studied
here to non-vibrating infinite crystals of Ca with one atom
per primitive cell, and two two-atoms-per-cell phases in which
the position of the second atom is locked in by symmetry.
The difficulty of the calculation increases as the symmetry is
lowered. The application here is to all the one-atom phases of
Ca with 11 symmetries of the 14 possible Bravais symmetries,
including the four orthorhombic symmetries.

We exhibit for each phase the equilibrium line [4] plotted
in structure space, which provides a complete description of

the changes in structure as p changes. Quantitative values of p
appear along the line, as well as ranges of p where the phase
is unstable; in these ranges the phase is still in an equilibrium
state (the gradient of G vanishes), but G has a saddle point
rather than a minimum. The designation of a phase as unstable
is confined here to one-atom-per-cell phases (one-atom phases
for short); in later developments the designation unstable
will also be applied to two-atom cells. The comprehensive
character of our procedure ensures that all one-atom phases in
the range of pressures and for the 11 symmetries studied are
found; the pressure goes up to 1–2 Mbar. Several new high-
pressure phases are found—a bct phase at 1.4 Mbar; an hcp
phase at 2.1 Mbar.

Extension of the procedure for finding one-atom phases
to monoclinic and triclinic symmetries is straightforward, as is
extension to two-atom cells. We can then determine if there are
one-atom phases that have these symmetries, but are different
from higher-symmetry phases. Two-atom phases with these
symmetries are more likely, as is the case for orthorhombic
symmetries. Extension of the procedure to more than two-atom
cells appears possible with increased computation.

The results are summarized in a plot of �G versus p,
where �G is the difference of the G of each phase from a
reference phase. These �G(p) functions give directly the
ground-state phase, the relative stabilities of the metastable
phases, and the p values at which thermodynamic phase
transitions are favored, and from the first and second p
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Table 1. Phases of Ca studied in this work; the short symbol, full
name and degrees of freedom for each phase.

Short
symbol Phase name

Degrees of
freedom

sc simple cubic 1
fcc face-centered cubic 1
bcc body-centered cubic 1
cd cubic diamond 1
st simple tetragonal 2
bct body-centered tetragonal 2
rh rhombohedral 2
sh simple hexagonal 2
hcp hexagonal close packed 2
orth1 simple orthorhombic 3
orth2 body-centered orthorhombic 3
orth3 base-centered orthorhombic 3
orth4 face-centered orthorhombic 3

derivatives of �G we obtain respectively the difference in
the volume V and the difference in V/B for the phase from
the reference phase values, where B is the bulk modulus. In
addition we make a test for absolute stability of the one-atom-
per-cell phases at each p.

Section 2 describes the successive-sweep procedure used
to find phases.

Section 3 gives results of calculations on the 13 phases of
Ca listed in table 1.

Section 4 discusses the limitations of the procedure for
finding phases, some interesting features of the results on the
13 phases studied here, and the value of the �G(p) results.

2. Computational details

Our procedures [1–5] find crystal phases, their structures,
equilibrium lines (eql), stabilities, and pressures of inter-
phase transitions (thermodynamic coexistence) in five stages
of calculation. The procedure finds and follows the minima
of E at constant V as the lattice parameters are successively
swept. If there are N parameters, then N − 1 sweeps are made
under the constraint of constant V .

The first stage finds states of a particular symmetry
corresponding to minima of the internal energy E at constant
volume V . These minima would be equilibrium states for
cubic symmetry, but not for lower symmetries. For finding
and characterizing the phases of a two-parameter structure
such as bct, hcp, sh, rh and st we look for minima of E at
constant V as a function of one parameter, e.g., c/a for bct,
where a = b �= c; at each minimum in EV (c/a) no further
minimization is needed to find a phase since V and c/a fix
the structure. There may be several minima on each EV (c/a)

curve and each minimum corresponds directly to a phase. The
energies at these minima are denoted Eph(V ), where ph refers
to a particular phase. Repetition of the c/a sweep at Vi gives
Eph(Vi), i = 1–n, where Vi becomes small enough to cover
the pressure range of interest.

Another example of the treatment of a two-parameter
structure is given by rh phases; we calculate EV (α) at constant
volume Vi , i = 1–n, covering the pressure range of interest,
where α is the structure angle. This rhombohedral sweep varies

Figure 1. (a) Total internal energy as a function of c/a (called
EV (c/a) curves) of sc phase of Ca at selected volumes. The
reference E0 is the total energy of sc Ca at V = 300 au3/atom. For
clarity the EV (c/a) curves at volumes from 200 to 80 au3/atom are
shifted toward E0 by 17, 48, 74, 115, 184 and 304 mRyd/atom
respectively. The solid lines interpolate between the calculated
points. (b) Equilibrium line of sc phase of Ca. The open circles
denote stable states; the crosses denote unstable states. The pressure
values shown in (b) are obtained from figure 8.

the α values of a one-atom rh unit cell, which is formed by

lattice vectors (
⇀

a,
⇀

b,
⇀

c) with a = b = c and angles α = β = γ .
The one-atom fcc primitive unit cell is a special case of the one-
atom rh unit cell with a =

√
2

2 a0, α = αfcc = 60◦, where a0

is the lattice constant of the conventional cubic fcc cell. The
one-atom bcc unit cell is another special case of the one-atom
rh unit cell with a =

√
3

2 a0, α = αbcc = 109.47◦, where a0 is
the lattice constant of the conventional bcc cell. The volume of
the rh unit cell is given by

V = a3(1 − cos α)
√

1 + 2 cos α. (1)

At each Vi and α the value of a is found from (1). The
minima in E(α) give directly the equilibrium states, i.e., give
the phases and give Eph(Vi) at volume Vi , i = 1–n in rh
structure.

If the structure has three parameters such as orthorhombic
structure (V , a, b, with c = V/ab) an additional minimization
of E with respect to a second lattice parameter is needed; i.e.,
to find the values of Eph(V ) at a given V two sweeps are
needed. The first can be a b-sweep at one value of lattice
parameter a, and at the given V . The minima of E from
the b-sweep may be designated Em at bm for the chosen a.
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Figure 2. (a) EV (c/a) curves of bct Ca at selected volumes. The
reference E0 is the total energy of fcc Ca at V = 270 au3/atom. For
clarity the EV (c/a) curves at volumes from 200 to 45 au3/atom are
shifted toward E0 by 21.5, 162, 245, 298, 364, 440, 548 and
886 mRyd/atom respectively. The vertical dashed lines indicate the
bcc and fcc phases at c/a = 1.00 and 1.414 respectively. The c/a
values of the bct phase vary with volume as indicated by the tilted
dashed lines. The solid lines interpolate between the calculated
points. (b) Equilibrium lines of the bct2, bcc and fcc = bct1 phases
of Ca. The open circles denote stable states; the crosses denote
unstable states. The pressure values shown in (b) are obtained from
figure 8.

Then we sweep the a values (and sweep b at each a) and find
Em(a), bm(a); the minimum of Em(a) with respect to a gives
Emm and bmm at a particular a, which can be called amm. Then
Emm gives the value of Eph(V ) at the given V and amm, bmm,
cmm = V/(ammbmm) give the equilibrium structure parameters
denoted (aeq = amm, beq = bmm, ceq = cmm), which provide
a phase point in structure space. Repetition at a series of V
values gives a series of Eph(Vi) i = 1–n and a series of phase
points, where Vi should become small enough to cover the
pressure range of interest.

In stage 2 the phase points (aeq, beq, ceq) as functions of
V are used to find the equilibrium line of each phase. For
structures with two lattice parameters the ratio ceq/aeq (call
it c/a) versus V gives the equilibrium line of that phase,
because a point (c/a, V ) in structure space corresponds to one
structure. When pressure p changes the crystal state moves
along a one-dimensional continuum of states in structure space.
For orthorhombic structures with three lattice parameters
two equilibrium lines ceq/aeq and beq/aeq versus V give the
structure of one phase.

Figure 3. (a) EV (c/a) curves of simple hexagonal (sh) Ca at
selected volumes. The reference E0 is the total energy of sh Ca at
V = 300 au3/atom. For clarity the EV (c/a) curves at volumes from
260 to 120 au3/atom are shifted toward E0 by −12.4,−6.10, 25.0,
73.4 mRyd/atom respectively. The solid lines interpolate between
the calculated points. (b) Equilibrium line of the sh phase of Ca. The
open circles denote stable states; the crosses denote unstable states.
The pressure values shown in (b) are obtained from figure 8.

In stage 3 the values of Eph(Vi) are used to find the
pressures as functions of V . These functions are different for
different phases. The pressures are found from the energies
Eph(Vi) at several adjacent Vi ,

pph(V ) = −dEph(V )/dV , (2)

where the pph(V ) function is the equation of state (EOS) of
just that phase.

In stage 4 the Gibbs free energy functions Gph(p) of the
individual phases are found from the functions Eph(V ) and
pph(V ) (or the inverse function V ph(p)) from stages 1 and 3,

Gph(p) ≡ Eph(V ph(p)) + pV ph(p). (3)

Finally, in stage 5 we test each one-atom-per-cell phase
for stability by our MNP (minimum path) program [2, 5].
The equilibrium states found from minima of E at constant
V are not necessarily stable (a strain that changes V could
decrease G); establishing stability of a state under pressure
requires evaluation of G and proving that G is a minimum
with respect to all possible small deformations around the
equilibrium state. Proving a minimum of G is equivalent to
showing the positive definiteness of the quadratic form in the
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Figure 4. (a) EV (c/a) curves of hcp Ca at selected volumes. The
reference E0 is the total energy of hcp Ca at V = 270 au3/atom. For
clarity the EV (c/a) curves at volumes from 200 to 57 au3/atom are
shifted toward E0 by 23.9, 82.5, 125, 153, 186, 226, 274, 417, 459,
491, 515 and 558 mRyd/atom respectively. (b) Equilibrium lines of
the hcp phase of Ca. The pressure values shown in (b) are obtained
from figure 8. In both (a) and (b) the solid lines interpolate between
the calculated points.

strains in the expression of δG:

δG

V0
≡ G − G0

V0
= 1

2

6∑

i, j=1

ci jεiε j . (4)

The second-order coefficients of δG are a set of elastic
constants ci j , i, j = 1–6. The MNP program evaluates δG(p)

for selected strains to determine the 21 elastic constants, which
form a 6 × 6 symmetric matrix ci j(p) at each p; the program
then finds the matrix eigenvalues (which the MNP program
uses to seek out the minima of G at constant p, i.e., the
phases). A negative eigenvalue means instability. The negative
eigenvalue is a proof of the static instability of an equilibrium
structure, i.e., a small strain exists that can lower the Gibbs free
energy of the static structure.

The total internal energy is calculated using the WIEN2k
package [6], which is an implementation of the full-potential
augmented-plane-wave plus local orbital (APW + lo) method
together with the Perdew–Burke–Ernzerhof generalized gra-
dient approximation (PBE-GGA). The APW + lo method ex-
pands the Kohn–Sham orbitals in atomic-like orbitals inside
the atomic spheres and plane waves in the interstitial region. A
plane-wave cutoff RMT Kmax = 7, RMT = 2.0 au, Gmax = 12,

Figure 5. (a) The Em(a) curves at selected volumes for the
body-centered-orthorhombic (orth2) phase of Ca. The reference E0

is the total energy of orth2 Ca at V = 250 au3/atom. For clarity the
energy curves at volumes from 230 to 70 au3/atom are shifted toward
E0 by 4.70, 19.5, 80.7, 247 and 452 mRyd/atom respectively. The
solid lines interpolate between the calculated points. (b) Equilibrium
lines for bct1 and bcc phases of orth2 Ca; the two bct1 lines have the
same structure. The open circles denote stable states; the crosses
denote unstable states. The pressure values shown in (b) are obtained
from figure 8.

mixer = 0.05 and 1000 k-points in the irreducible Brillouin
zone were used in all the band calculations. The k-space in-
tegration was done by the modified tetrahedron method. Tests
with larger basis sets and different Brillouin-zone samplings
yielded only very small changes in the results. The con-
vergence criterion on the energies is set at 1 × 10−3 mRyd
(10−6 Ryd).

3. Results

The procedures described in section 2 have been applied to 13
phases of Ca, 11 of the 14 Bravais symmetries to phases with
one atom per cell (sc, bct, bcc, fcc, st, sh, rh, orth1, orth2,
orth3, orth4) and two two-atom-per-cell phases (hcp, cd). In
figures 1–6 detailed results on eight phases are plotted (sc, bct,
bcc, fcc, sh, hcp, orth2, orth3). The results for the other five
phases (st, rh, cd, orth1, orth4) are straightforward with no
unusual features and are not plotted. In figures 1–6 the upper
plot is the energy as a function of a lattice parameter for several
V values. For the one-degree-of-freedom structures (V ) in (cd,
sc, bcc, fcc) all values of E give phase points in structure

4
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Figure 6. (a) The Em(a) curves at selected volumes for the
base-centered-orthorhombic (orth3) phase of Ca. The reference E0 is
the total energy of the orth3 Ca at V = 280 au3/atom. For clarity the
energy curves at volumes from 250 to 150 au3/atom are shifted
toward E0 by −1.50, 11.5 and 57.0 mRyd/atom respectively. The
solid lines interpolate between the calculated points. (b) Equilibrium
lines of the orth3 phase of Ca. The open circles denote stable states;
the crosses denote unstable states. The pressure values shown in (b)
are obtained from figure 8. The solid line is the equilibrium line of
the sh phase of Ca, which is the same as in figure 3(b). The
overlapping of the equilibrium lines of the sh and the orth3 phases of
Ca indicates that the equilibrium states of the orth3 phase have the sh
structure. The dashed line corresponds to a constant value of

√
3.

space; for the two-degrees-of-freedom structures (V , c/a) in
(bct, sh, hcp) the minima of E as a function of the lattice
parameters (e.g., c/a) give the phase points at each V ; for the
three-degrees-of-freedom structures (V , a, b) in (orth2, orth3)
an additional step is needed. In the third case the energy values
plotted are Em(a), which are minima of E as functions of b at
each a; this extra step is shown for orth3 in figure 7, where at
each a minima of E as b varies give Em(a) and bm(a), which
are plotted at one V . The phase points are then the minima of
Em(a), Emm = Eeq and the corresponding bmm = beq.

In each of figures 1–6 the lower plot gives the equilibrium
lines of the phase in a relevant structure space for that
symmetry; along the equilibrium line two additional features
appear: the stability or instability of points on the line is
marked, which has been found as in stage 5 of section 2,
and the pressures at several phase points are indicated. The
pressures are found locally for each phase as described in
stage 3 in section 2. The complete p(V ) functions for each
phase are plotted in figure 8.

Figure 7. (a) Plot of the b values bm(a) at the minimum of E at each
a for the base-centered-orthorhombic (orth3) phase of Ca at
V = 280 au3/atom. (b) Total energy Em(a) at each value of a
plotted in (a) showing two equilibrium states at aeq = 0.85ac and
1.5ac respectively which have the same energy, where ac = 3

√
Vcell

and Vcell is volume per unit cell. This Em(a) curve is the same as in
figure 6(a) at V = 280 au3/atom; bmm = beq and Emm = Eeq are
values at the phase point. In both (a) and (b) the solid lines
interpolate between the calculated points.

The p value and Eeq of each phase point are then used to
find G(p) as described in stage 4 in section 2. Figure 9 plots
the free energy difference �G = Gph − Gfcc as functions of
p, where ph = fcc, bcc, bct, sc, rh, sh, st, cd, hcp, orth1,
orth2, orth3, orth4, which gives an overall view of the phase
transitions, making clear the relations of all the phases to each
other.

We note some interesting features of the phase structures
in figures 1–6. The equilibrium line of sc phase shown in
figure 1(b) indicates that the sc phase of Ca is unstable below
355 kbar and stable from 355 kbar to at least 1616 kbar,
corresponding to the last point on the Gsc curve in figure 9.
Notice that the phase transition from fcc to sc takes place at
p = 355 kbar where the sc phase becomes stable, then the sc
phase becomes the ground state after the phase transition from
bcc to sc at 420 kbar; these phase transitions can be seen in
figure 9. Thus sc Ca is stable where it is the ground state and
is observed experimentally. This result is in good agreement
with [7, 8] but not [9], which finds that the sc phase of Ca is
mechanically unstable from 0 to at least 1200 kbar. In figure 2
on the bct phase, which also contains the bcc and fcc = bct1
phases, the bcc phase is unstable at low p, becomes stable over
a range of p, and then goes unstable again. At the second

5
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Figure 8. p(V ) curves for different phases of Ca, which are labeled
by the following symbols: solid circles for sc, st and orth1 phases,
open squares for bcc and orth2 phases, open triangles for sh and
orth3 phases, solid line for fcc and orth4 phases, open circles for hcp
phase, open diamonds for cd phase and crosses for bct phase. The
crossing of the p(V ) curve with the dashed line ( p = 0) shown in the
inset gives the equilibrium volume: V fcc

0 = 288.5 au3/atom,
V bcc

0 = 283.4 au3/atom, V hcp
0 = 285.0 au3/atom,

V sc
0 = 295.6 au3/atom, V hex

0 = 296.4 au3/atom. There is no crossing
for the p(V ) curve of the diamond phase of Ca.

instability, V = 90 au3/atom, a second bct phase (bct2) forms
at c/a < 1. The fcc phase, which is bct in a two-atom cell,
shows the inverse behavior, initially stable, then unstable, then
stable again. The unstable ranges of the bcc and fcc phases
cannot be deduced from curves in figure 2(a), but require a
complete elastic analysis [2, 5] using the complete 6×6 matrix
ci j , i, j = 1–6, which is described in stage 5 in section 2.

The stability on the equilibrium line of the sh phase in
figure 3(b) similarly requires the complete elastic analysis.

The hcp phase in figure 4 shows an abrupt deviation of
c/a to smaller values under high pressure like the bcc phase
in figure 2(a). However, we are unable at this time to find
the stabilities along the equilibrium line, because the elastic
analysis of two-atom cells is more complicated than for one-
atom cells and is not yet built into our MNP program.

In figure 5 the orth2 structure shows three equilibrium
lines. The structures are bct1, bcc and bct1 respectively, but the
bct calculation in figure 2 shows only two equilibrium lines at
low p—the bcc and fcc = bct1 lines. However, in figure 5 the
equilibrium line at c/a = 0.7 is actually for the same structure
as the one at c/a = 1.4 with the axes permuted (b = c),
whereas the bct calculation in figure 2 forces a = b, hence
does not find the 0.7 equilibrium line.

The correspondence of the orth3 phase to the sh phase is
shown in figure 6(b), and is known, for example, from the
behavior of the orthorhombic Imma phase of Si as it makes
a transition to the sh phase [10]. The two equilibrium lines in
figure 6(b) are actually the same orthorhombic structure with
axes permuted.

The transition pressures obtained from figure 9 are listed
in table 2 and compared to the experimental and theoretical
results reported in the papers [7, 9, 11–17]. The energy

Figure 9. (a) Gibbs free energy difference curves between the fcc
phase and the other phases of Ca, which are labeled by A,
Gbcc, Gorth2 bcc, G rh bcc; B, Gbct2; C, Gsc, Gst, Gorht1; D,
G fcc, Gbct1, Gorth4, G rh fcc; E, Gsh, Gorth3; F, Ghcp; G, Gcd. Curve G is
plotted in the inset along with curve C for a comparison of the energy
scale. (b) Free energy difference curves A, C, D, E and F, plotted in
an enlarged scale showing the phase transitions among the fcc, bcc,
hcp, sh and sc phases of Ca. In both (a) and (b) the solid lines
interpolate between the calculated points.

differences Gph − Gfcc at p = 0 obtained from figure 9 are
listed in table 3.

4. Discussion

This paper is a step toward the goal of finding all the phases of
a given element over a pressure range of experimental interest.
We have shown that with modest computation we can find
phases with the successive-sweep procedure used here in which
the unit cell has four degrees of freedom, such as monoclinic,
or orthorhombic with one additional atom with one degree of
freedom, tetragonal with an additional atom with two degrees
of freedom, or cubic with an additional atom with three degrees
of freedom. Here we study structures with one atom per cell
having 11 of the possible 14 Bravais symmetries plus two two-
atoms-per-primitive-cell structures, where the second atom is
fixed by symmetry. However, the number of distinct structures
is reduced to five one-atom-per-cell structures plus the two
two-atoms-per-cell structures, because identical structures to
high-symmetry crystals are found for lower-symmetry crystals
that have special values of the structural parameters.

The four orthorhombic symmetries are studied compre-
hensively using one-atom cells over a pressure range up to

6



J. Phys.: Condens. Matter 21 (2009) 435403 S L Qiu and P M Marcus

Table 2. Transition pressures (Mbar) for Ca.

References fcc → bcc bcc → sc bcc → hcp sc → unknown sc → hcp

[11] (experiment) 0.195 0.32 — 0.42 —
This work (theory) 0.10 0.42 0.56 — 0.94
[7] (theory) 0.08 0.41 — — —
[9] (theory) 0.07 0.41 0.65 — 0.98
[12] (theory) 0.15 0.33 — — 1.12
[13] a (theory) 0.07–0.21 — 0.80 — —
[14] b (theory) 0.090–0.056 0.404–0.414 — — —
[15] (theory) 0.16 ± 0.05 — — — —
[16] (theory) 0.0596 — — — —
[17] c (theory) 0.09(?) — — — —

a The author states that the calculated pressure range for the semiconducting phase is found to be
7–21 GPa for Ca, within which the structural phase transition is calculated to occur.
b The first number does not, the second number does, include the zero-point energy calculated in
the Debye approximation.
c The authors state that the fcc → bcc transition occurs at VT/Veq ≈ 0.6, corresponding to
∼ 0.2 Mbar; however, their figure 6 shows that VT/Veq = 210/256.9 	 0.82, corresponding to
∼ 0.09 Mbar.

Table 3. Energy differences Gph − G fcc = Eph − E fcc of Ca at p = 0.

Phases of Ca fcc bct bcc hcp sh & orth3 sc & st cd

Gph − G fcc at p =
0 (mRyd/atom)

0.00 0.13 0.78 1.1 18 30 ∼90 a

a This value is estimated from the slope of the first four points of curve G shown in
the inset of figure 9(a). Notice that the EOS curve of cd phase does not cross the
p = 0 line as shown in the inset of figure 8.

1–2 Mbar. An interesting result is that no uniquely orthorhom-
bic phases with one atom per cell are found; all the phases
found were the same as a higher-symmetry structure, which
was produced by special relations among the orthorhombic lat-
tice parameters.

Various physical and chemical properties of an element are
directly described by the set of �G(p) ≡ Gph(p) − Gfcc(p)

curves, which give a characteristic ‘fingerprint’ and a phase
diagram of an element. The G(p) phase diagram shown in
figure 9 is in good agreement with the phase diagrams reported
in two recent papers for Ca [7, 9] for fcc, bcc, sc and hcp
phases, which can be seen from the close values of the phase
transition pressures among these phases listed in table 2. Our
figure 9 differs from the phase diagrams in [7, 9] by including
all the one-atom phases in 11 Bravais symmetries, but without
the Cmcm and Pnma phases. From the �G(p) curves the
ground-state phase at any p can be identified, the relative
stability at p of every phase with respect to every other phase is
shown, the p values of thermodynamically favored transitions
(coexistence) between phases appear and the loss of stability
that results in the vanishing of a phase appears. In addition, we
have along the G(p) curve dG/dp = V , d2G/dp2 = V/B ,
where B is the bulk modulus. For �G curves, the derivatives
give the differences of V and V/B from the fcc phase values.

Additional properties of a phase along its equilibrium
line that can be calculated and that we are studying are the
following. (1) A quantitative measure of local stability is
given by the change in G from the equilibrium G value at
p to the lowest maximum of G in states at constant pressure
around the equilibrium state. This measure of stability would

identify especially stable metastable phases. Examples exist,
and if the element can be brought into that phase the phase
could be maintained for a long time. (2) The closest distance
in structure space can be found between two phases whose
G(p) curves cross, indicating a thermodynamically favored
transition between these phases. The smaller the distance,
the more the phases will interact, e.g. affect the other’s elastic
properties.
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